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Earth’s top-of-atmosphere radiative imbalance

CERES annual mean
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Can we infer the circulation & rainfall
directly from the net radiation”

Modeling Tropical Convergence Based on the Moist Static Energy Budget
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Can we infer the circulation & rainfall L
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Modeling Tropical Convergence Based on th€ Moist Static En@Budget

J. DAVID NEELIN
Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ 08542

ISAAC M. HELD
Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, NJ 08542

moist energy budget: Gth + U - Vh =+ Waph — Fnet

vertically integrate, time average, N _
neglect horizontal gradients: W < Qaph> o <Fnet>



Progress In last decade:
INstead assume maximum
rainfall IS coincident with the
“energy flux equator”
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Let’s go beyond the zonal mean, by combining CERES radiative
fluxes with estimates of surface turbulent fluxes

atmospheric vertically integrated moist energy budget:

Oy <h> —|—V°<ﬁh> = Rewet — Rroa + F + H
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Let’s go beyond the zonal mean, by combining CERES radiative
fluxes with estimates of surface turbulent fluxes

ocean:
atmospheric vertically integrated moist energy budget:

M+V~<ﬁh>:Rsurf—RTQA—I—E—I—H
N N/

CERES OAFlux (WHOI)

land:

surface energy budget: Q@ﬁ’s = Ryt +E+H

atmospheric vertically integrated moist energy budget:

QA + V - (Gh) = —Rroa — CERES



CERES radiation + OAFlux surface turbulent fluxes

annual mean net energy input to the atmosphere
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Now let’'s do two applications

1. Earth’s seasonal cycle — some surprising effects of clouds on
precipitation

2. The very persistent precipitation bias in climate models
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the atmosphere drives
this seasonal cycle of
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South Asia is unique, with an
oceanic maximum of energy input
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Effect of clouds on net
energy input to
atmosphere
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Clouds over the North
Indian Ocean are colder
and more extensive
than anywhere else
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Clouds over the North
Indian Ocean are colder
and more extensive
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These Indian
Ocean clouds have
a larger radiative
forcing than other
regions with similar
large-scale ascent

following Bony et al. 2004

probability density
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Theoretical prediction of the effect of
tropical cloud radiative effect on precipitation

tropical cloud radiative effect (W m-2)
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Theoretical prediction of the effect of
tropical cloud radiative effect on precipitation




Our two applications

1. Earth’s seasonal cycle — some surprising effects of clouds on precipitation

2. The very persistent precipitation bias in climate models



CMIP models
show a persistent
olas in tropical
rainfall

CMIP6 preC|p|tat|on bias (JJA, mm day 1)
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CMIP models also have a large positive bias in net energy input over
the Southern Ocean

CMIP6 MMM - observations (CERES+OAF|ux)




CMIP models also have a large positive bias in net energy input over
the Southern Ocean

CMIP6 MMM - ERAS reanalysis




Theoretical prediction of the effect of the
CMIP6 MMM energy input bias on precipitation
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precipitation
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Summary

- Moist energy inputs drive

tropical circulations . CERES TOA and surface
radiative flux estimates
provide an important
observational constraint on
the net energy input

- 2D (lat-lon) moist energy
budget frameworks can
help Iin quantitatively
understanding how
regional rainfall responds
to a variety of forcing

http://boos.berkeley.edu
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the global
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Basic motivating idea:
Tropical rainfall maxima shift toward an anomalous energy source
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Effect of clouds
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But we’ve left out the transient energy storage
term (here MAM)

reanalysis total energy tendency
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transient storage
approximated by dT/dt(500
hPa)

bias

CMIP - ERAINt




The net energy input to the atmosphere is a central quantity in these
frameworks, yet this has received little attention beyond the zonal mean

b July

40N -1

0 96E 1é0 o0W 0
Neelin (2007), Chou & Neelin (2003), from ERBE and COADS



